

Compressible Flow TME085

Basic Concepts

Specific Heat

Division of Fluid Dynamics Department of Mechanics and Maritime Sciences Chalmers University of Technology

Specific Heat Relations

For thermally perfect and calorically perfect gases

$$C_p = \frac{dh}{dT}$$

$$C_v = \frac{de}{dT}$$
(1)

From the definition of enthalpy and the equation of state $p = \rho RT$

$$h = e + \frac{p}{\rho} = e + RT \tag{2}$$

Differentiate Eqn. 2 with respect to temperature gives

$$\frac{dh}{dT} = \frac{de}{dT} + \frac{d(RT)}{dT} \tag{3}$$

Inserting the specific heats gives

$$C_p = C_v + R \tag{4}$$

Dividing Eqn. 4 by C_v gives

$$\frac{C_p}{C_v} = 1 + \frac{R}{C_v} \tag{5}$$

Introducing the ratio of specific heats defined as

$$\gamma = \frac{C_p}{C_v} \tag{6}$$

Now, inserting Eqn. 6 in Eqn. 5 gives

$$C_v = \frac{R}{\gamma - 1} \tag{7}$$

In the same way, dividing Eqn. 4 with ${\cal C}_p$ gives

$$1 = \frac{C_v}{C_p} + \frac{R}{C_p} = \frac{1}{\gamma} + \frac{R}{C_p} \tag{8}$$

and thus

$$C_p = \frac{\gamma R}{\gamma - 1} \tag{9}$$